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Abstract: Statistical methods are often based on the properties of the distribution of random variables or random
vectors. In functional data analysis (FDA) we do not work with random observation containing a finite random
vector, but the whole function is one observation. We call it the functional random variable or the random
function, in short. This paper offers the possibility to generate random functions with normal components. In this
case, the probability of small balls can be calculated numerically using the characteristic function. This tool can
be very useful in simulations and testing various kinds of estimates.
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1 Introduction
In the previous paper (see [6]), the author showed how
it is possible to express the random functional variable
(shortly random function or random curve) using the
Fourier series. A brief summary of these results fol-
lows.

Let the random function χ be a measurable map-
ping of a probability space (Ω,A, P ) into a separa-
ble Hilbert space H with the orthonormal base Ψ =
(ψn)

∞
n=0. Then χ can be expressed in the form

χ =

∞∑
n=0

Xnψn, (1)

where Xn are one-dimensional random variables
called components of the random function χ with re-
spect to the orthonormal base Ψ. These components
are defined by the scalar product

Xn(ω) = (χ(ω), ψn). (2)

For fixed ω ∈ Ω the relationship

‖χ(ω)‖2 =
∞∑
n=0

X2
n(ω)

holds. Then the norm of random function χ is a ran-
dom variable and we can express it in the form

‖χ‖2 =
∞∑
n=0

X2
n. (3)

It is also possible to define the stochastic inde-
pendence of the random function’s components in
the following way. We can say that the components

Xn, n = 0, 1, 2, . . . of the random function χ with
respect to the orthonormal system Ψ are (mutually)
independent if every finite subset of the components
is (mutually) independent.

The sum of squares of the coefficients of the
Fourier seriesmust be finite. The analogous condition
has to hold for the components of a random function:

P

( ∞∑
n=0

X2
n <∞

)
= 1. (4)

The sufficient condition to fulfill this property for in-
dependent components X0, X1, X2,…. is

∞∑
n=0

E(X2
n) <∞, (5)

which can be derived using Markov’s inequality.
Now it is very easy to simulate random func-

tions with given distribution. For instance, let Xn,
n = 0, 1, . . ., be the normally distributed random
variables, Xn ∼ N(µn, σ

2
n). As E(X2

n) = µ2n + σ2n
the condition (5) is equivalent to the conditions

∞∑
n=0

µ2n <∞,

∞∑
n=0

σ2n <∞. (6)

The following figure (Fig. 1) presents the
collection of 10 random functions defined from
L2(0, 1) with components X0 ∼ N((0, 1), Xn ∼
N( 1

2n ,
1

10n2 ), for n > 0. The functions

ψn(x) =

{
1 for n = 0,√

2 cos(nπx) for n > 0
(7)

were used as the orthonormal base.
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Figure 1: Simulated random functions

This paper focuses on the small balls B(χ, h) de-
fined as

B(χ, h) = {η ∈ H; ‖η − χ‖ < h}.

and the probability P (χ∈B(χ, h)) for random func-
tion χ and the fixed (non-random) χ ∈ H . If

χ =

∞∑
n=0

xnψn

then the probability of the ballB(χ, h) is given by the
probability of the set of all ω ∈ Ω for which

∞∑
n=0

(Xn(ω)− xn)
2 < h2. (8)

It is clear that the information about the distributions
of the components Xn can help us to evaluate the
probability of small balls. On the other had we can
made simulations using components of the random
function with predetermined distributions and obtain
the exact values of some estimated quantities by this
way.

2 Normally distributed components
Now let us suppose independent and normally dis-
tributed components Xn of the random function χ,
Xn ∼ N(µn, σ

2
n), σn > 0. It is clear that for the

random function χ and for the non-random element

χ ∈ H , χ =
∞∑
n=0

xnψn, and the difference χ− χ has

also normal components with the same variances and
means µn − xn. For this reason the below derived
properties of the random functions are also valid for
the differences of this kind.

As it follows from the relationships (3) the prob-
ability P (‖χ‖ < h) is equal to the probability

P

( ∞∑
n=0

X2
n < h2

)
. Due to this fact we focus on

properties of the distribution of the random variable

Y =
∞∑
n=0

X2
n.

The random valueX2
n has chi-squared distribution

with 1 degree of freedom. Its characteristic function
is

ϕX2
n
(t) =

1√
1− 2σ2nt i

e
µ2
nt i

1−2σ2
nt i (9)

andE(X2
n) = σ2n+µ

2
n. So we suppose that the condi-

tions in (6) are fulfilled. Now it is seen that the char-

acteristic function of Y =
∞∑
n=0

X2
n is

ϕY (t) =

∞∏
n=0

1√
1− 2σ2nti

e
µ2
nt i

1−2σ2
nt i

i.e.

ϕY (t) =
1√

∞∏
n=0

(1− 2σ2nti)

e

∞∑
n=0

µ2
nt i

1−2σ2
nt i . (10)

The question of the convergence of the infinite prod-
uct in (10) is solved in the 15-th chapter of [4] where
the following theorem can be found:

Theorem 1 Suppose {un} is a sequence of bounded

complex functions on a set S, such that
∞∑
n=0

|un(t)|

converges uniformly on S. Then the product
∞∏
n=0

(1+

un(t)) converges uniformly on S.

Let us put un(t) = −i2σ2nt. Evidently,
∞∑
n=0

|un(t)|

converges uniformly on any compact set S because
∞∑
n=0

|un(t)| = 2|t|
∞∑
n=0

σ2n. So the infinite product

∞∏
n=0

(1 − 2σ2nti) in (10) converges uniformly on any

compact set S.
The infinite sum in the exponential part is also ab-

solutely convergent on any compact set S:

∞∑
n=0

∣∣∣∣ µ2nt i

1− 2σ2nt i

∣∣∣∣ = ∞∑
n=0

µ2n|t|√
1 + 4σ4nt

2
≤ |t|

∞∑
n=0

µ2n.

Together it is seen the the characteristic function
ϕY (t) is defined for any real t. Now, let’s look at
its properties.
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Theorem 2 The real part of ϕY (t) is an even func-
tion and its imaginary part is an odd function of the
variable t.

Proof: At first, we have to identify uniquely the
square root of the expression 1−2σ2nti in the denomi-
nator of ϕX2

n
(t). The trigonometric form of 1−2σ2nti

is
1− 2σ2nti = rn(cosαn + i sinαn)

where

rn =
√

1 + 4σ4nt
2,

cosαn =
1

rn
,

sinαn = −2σ2nt

rn
,

αn ∈ (−pi
2
,
pi

2
).

As rn is the even function of the variable t it can be
easily seen that the real part of 1 − 2σ2nti is also an
even function while the imaginary part is an odd func-
tion of the variable t.

Let us choose the square root of 1 − 2σ2nti as√
rn(cos

αn

2 + i sin αn

2 ). Then

1√
1− 2σ2nt i

=
1

√
rn

(cos
αn

2
− i sin

αn

2
).

Next, for αn ∈ (−pi
2 ,

pi
2 ) we have

cos
αn

2
=

√
1 + cosαn

2
=

√
rn + 1

2rn

and

sin
αn

2
=

sinαn

2 cos αn

2

=

√
2

rn(rn + 1)
σ2nt.

These formulae yield the fact that the real part of
1√

1−2σ2
nt i

is an even function of the variable t and the

imaginary part is an odd function of the variable t.
The exponential part of (9) can be expressed as

exp

(
µ2nt i

1− 2σ2nt i

)
=

= exp

(
− 2σ2nµ

2
nt

2

1 + 4σ4nt
2
+

µ2nt

1 + 4σ4nt
2
i

)
=

= exp

(
− 2σ2nµ

2
nt

2

1 + 4σ4nt
2

)
·

·
(
cos

µ2nt

1 + 4σ4nt
2
+ i sin

µ2nt

1 + 4σ4nt
2

)
.

We can see again that the real part of this expression
is en even function while the imaginary part is an odd
function of the variable t. As this property is pre-
served by multiplying complex functions it is valid
for ϕX2

n
(t) as well as for the characteristic function

ϕY (t). �

Theorem 3 The characteristic function ϕY (t) is ab-
solutely integrable.

Proof: We have several possibilities how to express
the exponential part of ϕX2

n
(t). One of them is

exp

(
− µ2n
2σ2n

(
1− 1

1 + 4σ4nt
2

)
+

tµ2n
1 + 4σ4nt

2
i

)
so its absulute value is

exp

(
− µ2n
2σ2n

(
1− 1

1 + 4σ4nt
2

))
.

This is the even and unimodal function with maximal
value equal to 1 (for t = 0) and its limit for t→ ±∞

is equal to e
− µ2

n
2σ2

n . We can use the estimate∣∣ϕX2
n
(t)
∣∣ = 1

|
√

1− 2σ2nt i|

∣∣∣∣e µ2
nt i

1−2σ2
nt i

∣∣∣∣ ≤ 1
4
√

1 + 4σ4nt
2

and

|ϕY (t)| =≤
∞∏
n=0

1
4
√

1 + 4σ4nt
2

Let’s denote as ϕk(t) the partial product of the previ-
ous expression, i.e.

ϕk(t) =

k∏
n=0

1
4
√

1 + 4σ4nt
2
.

We see that the sequence of the functions ϕk(t) is
non-increasing in k for every t. So

|ϕY (t)| ≤
∞∏
n=0

1
4
√

1 + 4σ4nt
2
≤ ϕk(t), ∀k.

Then

|ϕY (t)| ≤ ϕ3(t) ≤
1

1 + 4s4t2

where s = min{σ0, σ1, σ2, σ3}. But the function

1
1+4s4t2 is absolutely integrable,

∞∫
−∞

1
1+4s4t2dt =

π
2s2 .

Therefore ϕY (t) is also absolutely integrable. �
Now, we know that the random variable Y is ab-

solutely continuous with the probability density func-
tion fY and the cumulative distribution function FY
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which can be evaluated using the formulae (see [5])

fY (x) =
1

2π

∞∫
−∞

e−itxϕY (t)dt (11)

and

FY (x) =
1

2
+

i

2π
p.v.

∞∫
−∞

e−itxϕY (t)

t
dt (12)

where p.v, denotes the Cauchy principal value of the
integral. Then the probability of the small ball can be
evaluated as

P (‖χ‖ < h) = P

( ∞∑
n=0

X2
n < h2

)
= FY (h

2).

3 Numerical computations and

simulations
The same parameters as for the example from the Fig-
ure 1 were used, i.e., µ0 = 0, σ20 = 1, µn = 1

2n ,

σ2n = 1
10n2 , for n > 0. The partial product and sum

in (10) were calculated until the absolute value of the
difference of two successive members was less then
10−6, so 280 members were used for the approxima-
tion of the characteristic function ϕY . The real and
the imaginary parts of ϕY are shown in Figure 2.
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Figure 2: Characteristic function of
∞∑
n=0

X2
n.

We used I = [−500, 500] as the interval for
the numerical calculation of the integrals in (11) and
(12) because the values of the characteristic in the
boundary points are small enough: |ϕY (±500)| <
10−7. This interval was split into 20,000 subinter-
vals and the composite trapezoidal rule was used for
the numerical integration together with the five-step

Romberg integration to achieve better accuracy. The
probability density function and the cumulative dis-
tribution function are displayed in Figure 3.
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Figure 3: Probability density function and cumulative

distribution function of
∞∑
n=0

X2
n.

We did a simple simulation to test the correctness
of the theoretical calculations. We generated N ran-
dom functions χ with the same distribution as be-
fore for N ∈ {100, 500, 1000, 5000, 10000}. Then
we estimated the probability P (‖χ − χ‖ < h) for
h ∈ {0.5, 1, 1.5, 2} by the approximation Pn(h) in
the form of the ratio of the number of favorable out-
comes and the total number of possible outcomes.

The norm ‖χ − χ‖ =

(
1∫
0

(χ(x)− χ(x))2dx

)1/2

was also computed using the composite trapezoidal
rule with the Romberg integration.

The function χ(x) = 1− x was used for the sim-
ulations. The Fourier coefficients of this function in
the orthonormal base (7) are

x0 =
1

2
, xn =

{
2
√
2

n2π2 , n odd.

0, n > 0, even

Then the exact probability P (‖χ− χ‖ < h) is given

by FY (h
2) for Y =

∞∑
n=0

X2
n where

Xn ∼ N(µn − xn, σ
2
n).

The following table (Table 1) summarizes the results.

4 Conclusion
The methods presented in this paper can be used for
the simulations of random functions and numerical
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Table 1: Estimates of probabilities of the small balls and numerical values.

h P100(h) P500(h) P1000(h) P5000(h) P10000(h) FY (h
2)

0.5 0.0800 0.1300 0.1240 0.1238 0.1250 0.1173
1.0 0.5400 0.5920 0.5290 0.5420 0.5379 0.5346
1.5 0.7700 0.8100 0.7830 0.7950 0.7865 0.7856
2.0 0.9100 0.9260 0.9210 0.9166 0.9185 0.9150

calculation of some probabilities concerning the dis-
tribution of these random functions. This fact offers
a wide range of applications, for example, to test var-
ious estimation methods in FDA.
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